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ABSTRACT 

If Ln (x) is the nth Laguerm polynomial and ;tn(X) = e -  ~x L, (n = O, 1,...), then 
we can expand the functions {2~(x)} over (0, ~) in terms of the set {~n(X)}, 
i.e., 2~(x)= ~ - o  Krt2r(x)" In this paper we prove an old-standing conjecture 
that ( -  1 ) t K ~  0 for 0 _< t ~ r (r = 0,1, . . .);  i .e.,  that, in the sensedef- 
ined by Trench, the set (2~} is alternating with respect to the set {~r(x)}. 

1.  I n t r o d u c t i o n  

I f  we start from the Laguerre polynomials 

(:) Ln(x) = ~ ( - I ) "  
~ - 0  

and define 2~(x) = e-~XL, (x ) ,  then it is well known that these form an ortho- 

normal set, complete in/.,2(0, oo). The question of linearizing a product of two 

such functions, that is, 

(1.1) 2,(x)A,(x) = ~ C,~2,(x) 
It=O 

led, in an earlier paper ['3], to the study of the coefficients C,,t. These can be 

obtained in the usual way, as 

(1.2) C,,t = 2,(x)2,(x)At(x) d x .  

It was conjectured [3] that ( - l y C , , ,  > 0 for 0 < t < r .  Subsequently [2] the 

coefficients C,,.t were evaluated asymptotically for large r in two special cases, 

t fixed and t = r ,  and the results were found to be in accord with this conjecture. 
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In this paper we shall prove the conjecture by induction, using the recurrence 

relations established in [2]. 

More generally if {$,}, {~b,} are two sets of functions defined in some domain 

and {$,} is complete in some function space which includes the members of  

{q~,} then we can always form the expansion 

(~k ~ ~, &kr (h = O, 1, ...). 
k=0 

Trench has introduced the concept of  {~n} being a l t e r n a t i n g  with respect to 

{$~} if (-1)kAhk >--__ 0 for 0 -< k -< h. Hence what we shall prove in this paper 

is that the set {2 2} is alternating with respect to {2.}. 

2. Recurrence relations 

We define 

f; (2.1) / G  = c , , ,  -- ,?,(x)~,(x)dx 

(2.2) Sn = ( -  1) 'K , ,  

(2.3) E, = r , ,  

(2.4) T, = S,, = ( - 1 ) ' E , .  

We note that while C,~t is clearly symmetric in r, s, t ,  the coefficients Kn, S,t 

are not, in general, symmetric. 

The following recurrence relations have been established [2]. 

3c,~ - (c,_~., . ,  + c , . , -1 . ,  + c, . , . , -  9 
(x,..,,) 

-- (Cr, s_ l , t -  1 "Jr Cr_l,s, t_ 1 dr Cr_l ,s_l , t )  dr 3C4-1, ,- t  t - 1  = 0 ,  

unless r = s = t = 0, in which case 

(2.5) Co.o,o = 2/3, 

r { 9 K , . ,  - 6 K , . , _ ,  + K , . , - 2 }  - ( 2 r - 1 ) { 5 K , - t . , -  6K , - l . t - t  + 
(Y,.,) 

+ 5 K r - 1 , , - 2 }  dr ( r - 1 ) { K r - 2 , t -  6K,-2 . , - ,  + 9K,-2.,-2} = 0 

(z , . , )  
9 t K , ,  t - 3(2t - 1)K,, t_ t + (t - 1)K,, t_ 2 - t K r _  x,~ 

+ 3 ( 2 t - 1 ) K , _ x . , _ l - 9 ( t - 1 ) K , _ 2 . , _  2 = 0 

and 
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3t ( t -  1)K,,, - 2(t - 1) ( 5 t -  8 r -  9)K,,t- 1 

(v,,,) 
+ 2(t - 2) (5t - 8r - 14)K., t_ a - 3(t - 2) (t - 3)K.,,_4 = 0. 

We shall also have to make frequent use of  (X~,,,~) which is easily seen to reduce 

to 

(V~) K~,n_ 1 + K~_ 1,n = En + E~_ 1. 

The subsequent proof will be based mainly on the relations (X) - (V). To  

simplify reference to these equations we have denoted them, as above, by 

(X,,,,t), (Y,,t), (Z,,t), (U.,t), (1I.) respectively. When using them for other values 

of the subscripts, we shall indicate the fact by appropriate changes in the sub- 

scripts of X, Y, Z, U, V. 

Some care has to be taken when we use the above relations for small values 

of  r, s, t where some of the subscripts can become negative. It turns out that these 

can be taken care of  quite simply, with one exception, by simply setting equal 

to zero all terms C~,a, ~ or K~,p im which any of the subscripts is negative. The one 

exception is when r = s = t = 0 in (X); (note: in our notation (Xo,o,o)). In this 

case (X) has to be replaced by (2.5). 

3. The c a s e t = r = n  :proofthatT n > 0  

We shall prove the following relations: 

(3.1) 9(n + 1)2Tn+l --- (9n 2 + 1)(T. + T~-I) - 9 ( n -  1)2T.-2 

n--2 

(3.2) 9n2T~ = 9(n-1)2Tn_2 + (To + 9TI + Tn_I) + 2 ~, T~ 
i = l  

for n = 3 ,4 ,5 . . . .  Since To, T1, T2 are known to be positive [3], [2], it follows 

by induction from (3.2) that T~ > 0 (n = 0,1, 2, 3,.-.).  It is also easily seen that 

(3.2) follows by induction from (3.1), and so it only remains to prove (3.1). 

PROOF OF (3.1). From (X._ 1,~,~), (X~_I,._ 1,~) respectively we obtain 

(3.3) 3K~,~_1 - (Kn,~-2 + 2K._1.~) - (Kn_l,.-1 + 2C~,.-1,~-z) + 3K~-1,~-z = 0 

and 

(3.4) 3K._1, , -  (2Cn.._1,,_ 2 + K~_l ,~_l) - (2K._l , ._  2 + K~_2,n) + 3K._2,._1 = 0 

Subtraction of  (3.4) from (3.3) leads to 

(3.5) K n , n - 2  - K n - 2 , n  = 3Kn.~-I - 5K~-1,. + 5K. -1 . . - z  - 3K.-2,~-1 
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and, changing n to (n + 1) in (3.5), gives 

( 3 . 6 )  Kn+l,n_ 1 -- K~_I,~+ 1 = 3Kn+l, n - 5Kn,n+ 1 "}" 5 K s , n -  1 - -  3Kn_l,.. 

Consider now the fourteen relations (Y~+1,~+1), (Y~,~+I),(Z..+2), (Z~.~+I) 

(Z,,.), (Z~_I,.+1), (Z._I,,), (U.,.+2), (U.-1,.+2), (Vm), (V~-a), (V~+I), (3.5), and 

(3.6). We can see by inspection that they contain exactly thirteen off-diagonal 

terms Kn, that is, terms in which r # t. These can bc eliminated successively 

from the fourteen equations by elementary methods and we obtain finally 

(3.7) 9(n .-1- 1)2En+l + (9n 2 + 1)(E n - En-x) - 9 (n -  1)2E~ -- 0. 

Substituting from (2.4) in (3.7) immediately yields (3.1). 

We have already noted that (3.2) follows from (3.1) by induction, and hence 

also that T~ > 0. 

4 .  The case t = 0 

It follows from (2.1) and (2.2) that 

(4.1) S.o = K,o = 22,(x)dx > O. 

Moreover, 

K,o u' = F(u,0) 
r=0 

(4.2) = 2(9-I0u + u2) -~ 

where P,( ) is the rth Legendre polynomial, and hence 

3r+ 1 

Later we shall also need the fact that S..o < S,-1,. (r = 1,2, ...). This follows 

immediately from (4.3). For if we write p, = P,(5/3), than, by the standard re- 

currence relation for Legendre polynomials [I],  we have 

5 
(4.4) (r + 1)P,+I = 3(2r + 1)p.-- rp.-1.  

I f  n o w  pr/p,_ 1 < 3 then, by (4.4), we shall also have 
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(4.5) 

P,+ 1 5 2r + 1 r 
p, 3 ( r + l )  3 ( r + l )  

9 r + 5  
- - - < 3 .  

3(r + 1) 

Since PJPo = 5/3 < 3, it follows that Pr[P,-1 < 3 for all r and hence, by (4.3), 

(4.6) $, .o<S,-1 .o .  

5. Proof of complete eoojeeture 

In this section we shall prove that, for r >_- t > 0,  

S,,,> 0. 

Since we have seen in Section 4 that this also holds for t = 0 and, in Section 3 

that E, = S, ,  > 0, this will complete the proof of our conjecture. 

We shall begin by proving the following relations: 

(5.1) 9(t + 1 ) ( $ t - l , t - 1  - St , , -1)  = 3 ( t - 1 ) ( S t - l , t - 2  - S . , - 2 )  + 8$t- l . t - t  

9 t S , , t  = 3 ( 2 t - 1 ) ( S r - l . t - 1  - S , . t -1 )  + ( t - 1 ) ( S , - t . , - 2  - 
(5.2) 

- S,.,-2) + 8 ( t -  1)S,-1.t-2 + tS,-1.,  

9 ( 2 r - t  + 1)(S,_l.t_ 1 - S,.t-1) = (2r + t - 3 ) ( S , - 2 . t - i  - S,-1.t-1) + 

(5.3) 
+ 8 S , - i . t - 1  + 3 ( t - 1 ) ( S , - 2 . t - 2  - S , . t -2 )  

where r, t = 0, 1,2, . . . ,  with the usual proviso that terms in which either of the 

subscripts is negative have to be set equal to zero. We shall then deduce our 

final result from these three relations by induction. 

PROOF OF (5.1), (5.2), and (5.3). I f  we write down (Y,,t+l), (Yn) ,  (Z,-l . t+l),  

(Z,-1.t) we see that the 4 x 4 determinant of the coefficients of K,_2,t+l,  

K,-2. t ,  Kr-2,t-1,  K,-2.t-2 in these equations vanishes, and so all four terms 

can be eliminated. This leads to 

9r(t + 1)K,,t+ 1 - (r + 4)(t + 1)K,-1 ,+z - 3 r ( l l t - 7 ) K , ,  

(W,.,+I) + 3 ( 3 r t - 7 r + 4 t + 4 )  + 3 (3r t -7r  + 4t + 4)K,_1. t + r(19t-17)K,, t_ 1 

- (27rt - 17r - 4t + 4)K,_ 1.,- z - 3r(t - 1)K,. t_ 2 + 3(9r - 4) (t-1)K,_ 1,-  2 

0. 
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We adjoin to this the six relations (Y,+l.t+l), (Y,+x.t), (Z,+ t.t+ l), (Z ,+i , t ) ,  

(Z,, t+l),  (Z,.t) and, from the combined set of  seven, eliminate the five terms 

K,+ l,t+ l , K,+ l , t - z ,  K , -1 ,~-2 ,  Kr, t+ l , K , - 1 . t +  l . This yields the two equations 

(5.4) [9(r + 1)Kr+1, , - ( 1 0 r - 4 t  + 5)Kr,, - 3(r + 1)K,+1,,_1] + rK ,_x ,  t + 

+ 3(2r + 1)K,,t_ 1 - 3 r K , _  1.t- 1 - 4 ( t -  1)K,, t_ ~ = 0 and 

(5.5) 919(r + 1)K,+I, t - ( 1 0 r - 4 t  + 5)K,, ,  - 3(r + 1)K,+l,t-1] + 

+ ( 9 r -  32t)K,_ 1,t + 2 r -  3 3(82t + 41)K,,t_ x - 3 (73r -  32t)K,_ 1,,- 1 - 

- -  4 ( t - 1 ) K r , t _  2 = 0 

and 9 x (5.4)-(5.5) yields simply 

(5.6) t K , _ t ,  t - 3 ( 2 r - t  + 1)K,, t_ 1 + 3 ( 2 r - t ) K , _ l , t _  1 - ( t - 1 ) K , . t _  2 = 0. 

We now see that both K, . t -2  and K,- : , t  can be eliminated between (5.6) and 

(Z,,t), giving 

( 5 . 7 )  3 t K , .  t - ( 2 r  + t ) K , , t _  1 + ( 2 r  + t - 1 ) K r _ l . t _  x - 3 ( t - 1 ) K r _ x , t _  z = O. 

If  we write r + 1 for r in (5.6), multiply the resulting equation by 3, and subtract 

from (5.7), we obtain 

(5.8) 9 ( 2 r - t  + 3)K,+1,,_ 1 - 2 (10 r -4 t  + 9)Kr,t_ 1 + (2r + t - 1 ) K , _ l , t _  1 + 

+ 3 ( t - 1 ) ( K , + l , t - 2  - K,-1,t-2) = 0. 

Now set r = t - 1  in (5.8) and eliminate Kt_2. t_ t from the resulting relation 

by means of  (~-1 , t -1 ) .  We obtain 

(5.9) 9(t + 1 ) ( K t _ L t _ l - K t , t _ l )  + 3 ( t - 1 ) ( K t _ L t _ 2 - K t . t _ 2 ) - 8 K t _ l . t _  1 = 0 

that is, by (2.2), the relation (5.1). 

Also, substituting from (2.2) in (Z,,t) immediately yields (5.2), while, if we 

replace by r by r - 1  in (5.8) and again use (2.2), we obtain (5.3). 

We shall now use (5.1)-(5.3) to prove our conjecture. This has already been 

proved for the special cases t = 0, t = r (r = 0,1, 2, . . . ) ,  and it remains to prove 

that Sn > 0 for 1 < t < r -  1, r > 2. The proof  will be by induction. Indeed, 

we shall show that for r, t in this range,  

(5.10) S, -1 , t  > S,,t > O. 

The proof will be in two stages: 

i. (5.10) holds for t = 1; 
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ii. if(5.10) holds for all r < p,  0 < t < r ,  and for r = p ,  0 < t < ~ < p - l ,  

then it will also hold for r = p,  t = z + 1. 

PROOF OF (5.10i). Set t = 1 in (5.2), and we obtain 

(5.11) 9S,,1 = 3(S,-1,o - S,,o) + S,-1,1 > Sr- l , t  

by (4.6), and hence 

(5.12) S t ,  1 > 9-r+1s1,1 ~> 0.  

Also, if we substitute (r + 1) for r in (5.3) and set t = 2, we obtain 

9(2r + 1)(St,1 -- S,+1,1) = (2r + 1)(S,_l, 1 - S,,1) + 
(5.13) 

+ 8S,,1 + 3(S,-1,o - S , + l . o ) .  

But it follows from (4.5) that 

(5.14) S,-1,o > S,,o > S,+1,o 

and hence, by (5.12), (5.14), (5.13) we obtain 

1 
(5.15) S t ,  1 - -  St+l,  1 • ~(Sr-1,1 -- St, l) 

1 
~> - - ( S l ,  1 -- S2,1). 

9 r - 1 

Now it is easily verified, for example, by expanding the low order terms of (2.6), 

that 

and so by (5.15), 

(5.16) 

for r > l .  

2 10 
$1,1 = ~-~, $2.1 = 243 

Sr ,  1 - -  St+l,  1 > 8.3 -2r-3 > 0 

PROOF OF (5.10ii). Set r = p ,  t = z + l  in (5.2), and it follows at once, by the 

inductive hypothesis, that Sp.,+ 1 > O. 

To prove that Sp,,+l < Sa-I . ,+I  we have to distinguish two cases. 

Case 1. t < p - 2 .  Set r = p ,  t = z + 2 i n  (5.3) and we obtain 

(5.17) 9 ( 2 p - ~ -  1)(sp_ 1.,+ 1 - sp.,+ 1) 

= (2p + �9 + 1)(s~_2 , + 1 -  s ~ - i  ,+1) + 8 s~_~ . ,+1+3(~  + 1)(sp_2.,-s~.o 
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and each term on the right-hand side of (5.17) is positive by the inductive 

hypothesis. 

Case 2. z = p -  2 ,  that is, we have to prove that Sp,p_ t < Sp_ 1,p- 1, but this 

follows at once from (5.3) if we set t = p .  
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